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Localized structures analogous to the Kekulé structures for benzenoid hydrocarbons can be
constructed for the deltahedral boranes B Hn n

2−. These localized structures contain exactly
three two-center two-electron (2c-2e) B–B bonds and n – 2 three-center two-electron (3c-2e)
B–B–B bonds. The number of equivalent such Kekulé-type structures corresponds to the in-
dex of the symmetry group of the Kekulé structure, K, in the symmetry group, D, of the
deltahedron. Three-dimensional Kekulé-type structures with the following configurations ex-
hibit excessive strain and are therefore unfavorable: (i) structures having one or more pairs
of boron atoms connected simultaneously by a 2c-2e B–B bond and a 3c-2e B–B–B bond (vi-
olation of the O′Neill–Wade restrictions); (ii) structures in which the three 2c-2e B–B bonds
are excessively concentrated occupying only three or four vertices (the undesirable ∆, U, and
Y configurations). Computations by Lipscomb and coworkers with partial retention of di-
atomic differential overlap (PRDDO) suggest that wide distribution of the three 2c-2e B–B
bonds throughout the deltahedron and a minimum number of empty faces are more impor-
tant than maximum symmetry in leading to the most favorable Kekulé-type structure.
Keywords: Boranes; Aromaticity; Boron clusters; Symmetry; Topology.

The chemical bonding theory of two-dimensional planar hydrocarbons and
isoelectronic heterocycles uses the concepts of resonance energy and aro-
maticity1,2 as originally arising from molecular orbital theory3–5, and subse-
quently refined by methods based on graph theory6–9. More recently these
concepts have been extended to three-dimensional structures including
particularly the polyhedral borane anions B Hn n

2 − (6 ≤ n ≤ 12) and iso-
electronic carboranes10–12. The structures of these borane anions are based
on the “most spherical” deltahedra (polyhedra with all faces triangles)
without any degree 3 vertices13 (Fig. 1).
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A central idea associated with aromaticity in planar benzenoid hydrocar-
bons is the contribution of two or more different localized structures of
equivalent energy consisting of alternating carbon–carbon single and dou-
ble bonds to a lower energy averaged delocalized structure known as a reso-
nance hybrid. Such localized structures are known as Kekulé structures. In
benzene itself, the two equivalent Kekulé structures contain three double
and three single bonds alternating along the edges of the C6 hexagon and
are mirror images of each other (Fig. 2a).

At approximately the same time as the Kekulé structures for benzene were
first proposed in the 19th century14,15, some alternative structures were also
suggested16 such as the Dewar17, Claus18, and Ladenburg19 structures (Fig. 2b).
These alternative structures were soon found not to be useful for the de-
scription of benzene and at best represent highly strained high-energy
isomers of benzene. Indeed, during the 1960s and 1970s the Dewar and
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FIG. 1
The deltahedra for the boranes B Hn n

2− (n = 6, 7, 8, 9, 10, and 12)

6 vertices:
Octahedron

7 vertices:
Pentagonal
bipyramid

9 vertices:
4,4,4-Tricapped
trigonal prism

10 vertices:
4,4-Bicapped
square antiprism

12 vertices:
Icosahedron

8 vertices:
Bisdisphenoid
(“D2d Dodecahedron”)



Ladenburg structures were realized experimentally in isolable compounds20,
namely the bicyclo[2.2.0]hexadienes (“Dewar benzenes”) and the prismanes21

(Fig. 2c).
A question of interest is how the concept of Kekulé structures can be ex-

tended to three dimensions in the deltahedral boranes. In this connection I
have shown how three-dimensional analogues of localized Kekulé struc-
tures for the deltahedral borane anions B Hn n

2 − (6 ≤ n ≤ 12) can be obtained
by using three-center two-electron (3c-2e) B–B–B bonds instead of the
carbon–carbon double bonds in benzenoid Kekulé structures22,23 (e.g.,
Fig. 2a). Such a Kekulé-type structure for a deltahedron with n vertices con-
sists of n – 2 two-center two-electron (2c-2e) B–B bonds and exactly three
3c-2e B–B–B bonds regardless of the value of n. This leads to a total of
(n – 2) + 3 = n + 1 skeletal orbitals corresponding to the 2n + 2 skeletal elec-
trons for stable deltahedral boranes required by Wade’s rules24.
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FIG. 2
The two equivalent Kekulé structures for benzene (a). Alternative structures proposed for ben-
zene in the 19th century (b). Bicyclo[2.2.0]hexadiene (“Dewar benzene”) and prismane deriva-
tives first synthesized in the 1960s and 1970s (c)

Bicyclo[2.2.0]hexadiene
(“Dewar benzene”)
derivatives

Prismane
derivatives

Dewar Claus Ladenburg
Alternative 19th century structures for benzene

Two equivalent Kekulé structures of benzene

a

b

c



Using this general idea, Kekulé-type structures (Fig. 3a) can be con-
structed for octahedral B H6 6

2 − having the required four 3c-2e B–B–B bonds
in alternate faces of the octahedron (the shaded faces in Fig. 3a) and the re-
quired three 2c-2e B–B bonds in three of the 12 edges related by a C3 axis
(the bold edges in Fig. 3a). These Kekulé-type structures for B H6 6

2 − can be
seen from a geometrical point of view to be the equivalent of the two famil-
iar Kekulé structures of benzene (Fig. 2a). However, from an energetic point
of view these structures for B H6 6

2 − are highly strained. Such localized struc-
tures therefore may be regarded as analogous to high-energy localized struc-
tures for benzene, such as the Claus structure (Fig. 2b) with three
“para-connections” between the carbon atoms in the C6 ring.

This paper examines the systematics of the three-dimensional analogues
of the Kekulé-type structures for the deltahedral boranes with the objective
of identifying unfavorable features of such localized structures leading to
strain similar to that found in the high-energy structures for benzene
(Fig. 2b). The deltahedra with 6, 7, 8, 9, 10, and 12 vertices (Fig. 1) are con-
sidered in this paper since they are of reasonably high symmetry (D2d or
greater) and have only degree 4 and 5 vertices. Deltahedra with 11 vertices
are not considered in this paper because of the lower symmetry (C2v) of the
most spherical 11-vertex deltahedron found, for example, in B H11 11

2 − . This
relatively low symmetry of the most spherical 11-vertex deltahedron com-
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FIG. 3
Two of the Kekulé-type structures for B H6 6

2− having the required four 3c-2e B–B–B bonds in al-
ternate faces of the octahedron (a). These types of Kekulé-type structures for B H6 6

2− in dual
form (b)

Three-dimensional Kekulé-type
structure for B H6 6

2− with 3c-2e
B–B–B bond in alternate faces

Dual form of the above Kekulé-type structures

a

b



plicates the study of its Kekulé-type structures because of the possibility of a
large number of similar but not equivalent possible such structures. Fur-
thermore, an 11-vertex deltahedron with only degree 4 and 5 vertices is
shown to be topologically impossible25 and thus the deltahedron found in
B H11 11

2 − and its carborane analogues has a degree 6 vertex in addition to de-
gree 4 and 5 vertices.

Construction of Kekulé-Type Structures

The feature of particular interest distinguishing three-dimensional boranes
from two-dimensional planar hydrocarbons is the presence of three-center
bonds. In this connection Lipscomb and coworkers26,27 have studied the to-
pology of the distribution of 2c-2e B–B and 3c-2e B–B–B and B–H–B bonds
in the boron network of borane structures making the following assump-
tions:

1. Only the 1s orbital of hydrogen and the four sp3 orbitals for boron are
used.

2. Each external B–H bond is regarded as a typical 2c-2e bond requiring
the hydrogen orbital, one hybridized boron orbital, and one electron each
from the hydrogen and boron atoms. These bonds are assumed to be non-
polar because of the very small electronegativity difference between hydro-
gen and boron.

3. Each B–H–B 3c-2e “bridge” bond corresponds to a filled three-center
localized bonding orbital requiring the hydrogen orbital and one hybrid
orbital from each boron atom.

4. The orbitals and electrons of any particular boron atom are first allo-
cated to satisfy the requirements of bonding to the hydrogen atoms, i.e.,
the 2c-2e external B–H bonds and the 3c-2e bridge B–H–B bonds. The re-
maining orbitals and electrons are then allocated to molecular orbitals of
the boron skeleton.

The relative numbers of boron atoms, hydrogen atoms, electrons, and
orbitals as well as bonds of various types can be expressed in a systematic
way. For a borane BpHp+q containing s bridging hydrogen atoms, x “extra”
B–H bonds in terminal BH2 groups rather than B–H groups, t 3c-2e B–B–B
bonds, y 2c-2e B–B bonds, and at least one hydrogen atom bonded to each
boron atom, balancing the hydrogen atoms leads to s + x = q. Since each
boron atom supplies four orbitals but only three electrons, the total num-
ber of 3c-2e bonds in the molecule is the same as the number of boron
atoms, i.e., s + t = p. This leads to the following equations of balance.
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2s + 3t + 2y + x = 3p

(orbital balance with 3 orbitals/BH vertex)

(1a)

s + 2t + 2y + x = 2p

(electron balance with 2 skeletal electrons/BH vertex)

(1b)

Now consider the application of Eqs (1a) and (1b) to the deltahedral
boranes B Hn n

2 − (6 ≤ n ≤ 12). Such deltahedral boranes cannot have any ter-
minal BH2 groups or 3c-2e B–H–B bridges so that s = x = 0 in the equations
of balance (Eqs (1a) and (1b)). This leads to the following equations in
which n is the number of boron atoms in the deltahedron corresponding to
p in Eqs (1a) and (1b):

3t + 2y = 3n (2a)

2t + 2y = 2n + 2 (2b)

Again Eq. (2a) relates to orbital balance and Eq. (2b) relates to electron
balance. Solving the simultaneous equations (2a) and (2b) leads to y = 3
and t = n – 2 implying the presence of three 2c-2e B–B bonds and (n – 2)
3c-2e B–B–B bonds. Since a deltahedron with n vertices has 2n – 4 faces,
the (n – 2) 3c-2e B–B–B bonds cover exactly half of the faces. In that sense
a Kekulé-type structure for the deltahedral boranes B Hn n

2 − has exactly half
of its faces covered by 3c-2e B–B–B bonds just as a Kekulé structure for a
benzenoid hydrocarbon has half of its edges covered by C=C double
bonds22,23.

The number of equivalent Kekulé-type structures, NK for a given
deltahedral borane corresponds to the index of the symmetry group, K, of
the Kekulé-type structure in the symmetry group, D, of the underlying
deltahedron leading to the equation

NK = |D|/|K| (3)

in which |D| and |K| are the orders of the symmetry point groups D and K,
respectively. Equation (3) is satisfied by the two Kekulé structures of ben-
zene (Fig. 2a) where D = D6h and K = D3h so that |D| = 24, |K| = 12, and NK =
|D|/|K| = 24/12 = 2. The sum of the entire set of equivalent Kekulé-type
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structures, ΣK, for a given borane deltahedron has the full symmetry of the
underlying deltahedron.

Kekulé-type structures for borane deltahedra, such as those for the B H6 6
2 −

octahedron depicted in Fig. 3a, rapidly become difficult to draw and visual-
ize for any of the deltahedra of interest. However, by converting the borane
deltahedra and their Kekulé-type structures to their duals, the Kekulé-type
structures become much easier to depict and visualize. In this connection a
given polyhedron, P, can be converted into its dual P* by locating the verti-
ces of P* above the centers of the faces of P and the centers of the faces of
P* above the vertices of P. Two vertices in the dual P* are connected by an
edge when the corresponding faces in P share an edge. The process of
dualization has the following properties:

1. The numbers of vertices (v and v*), edges (e and e*), and faces (f and f*)
in a pair of dual polyhedra P and P* satisfy the relationships v* = f, e = e*,
f = v*.

2. Dual polyhedra have the same symmetry elements and thus belong to
the same symmetry point group.

3. Dualization of the dual of a polyhedron leads to the original polyhe-
dron.

4. The degrees of the vertices of the polyhedron correspond to the num-
ber of edges in the corresponding face polygons of its dual. Thus the duals
of the deltahedra are trivalent polyhedra, i.e., polyhedra in which all verti-
ces are of degree 3.

The following observations can be made concerning the duals of the
deltahedra of interest (Fig. 4):

1. The dual of a bipyramid is a prism of the same symmetry. For example,
the dual of the pentagonal bipyramid (the B H7 7

2 − deltahedron) is the pen-
tagonal prism.

2. The dual of a capped polyhedron is a truncated polyhedron of the
same symmetry. For example, the dual of the tricapped trigonal prism (the
B H9 9

2 − deltahedron) is the tritruncated trigonal bipyramid.
3. The dual of an antiprism is a trapezohedron of the same symmetry in

which all faces are equivalent trapezia, i.e., quadrilaterals in which no pair
of edges is parallel. For example, the dual of the ten-vertex bicapped square
antiprism (the B H10 10

2 − deltahedron) is a bitruncated tetragonal trapezo-
hedron. The truncation of the two antipodal degree 4 vertices of a tetragonal
trapezohedron to give the bitruncated tetragonal trapezohedron (Fig. 4)
converts all eight equivalent trapezium faces of the original trapezohedron
into equivalent non-regular pentagons.
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The duals of the borane deltahedra with 6, 7, 8, 9, 10, and 12 vertices are
trivalent polyhedra with quadrilateral and pentagonal faces corresponding
to degree 4 and 5 vertices, respectively, of the original deltahedron.

The process of forming Kekulé-type structures for deltahedral boranes can
also be dualized so that 3c-2e B–B–B bonds in deltahedral faces become spe-
cial vertices and the 2c-2e B–B bonds become special edges. Figure 4 depicts
a sample Kekulé-type structure for each of the deltahedral boranes in Fig. 1
in dualized form. In Fig. 4 the special vertices of the dual corresponding to
the 3c-2e B–B–B bonds are marked by bold dots and the special edges corre-
sponding to the 2c-2e B–B bonds are marked by bold lines.
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FIG. 4
The duals of the deltahedra in Fig. 1 showing a Kekulé-type structure in dual form for each
polyhedron

6 faces:
Cube, C3v(Y)

7 faces:
Pentagonal
prism, CS(U)

9 faces:
4,4,4-Tritruncated
trigonal bipyramid,
C3(III)

8 faces:
Dual of the
bisdisphenoid,
C2V(III)

10 faces:
4,4-Bitruncated
tetragonal
trapezohedron,
CS(VI)

12 faces:
Dodecahedron,
C3(Y)



Avoidance of Strained Configurations in the Construction
of Three-Dimensional Kekulé-Type Structures

Some three-dimensional Kekulé-type structures constructed according to
the rules outlined above are found to have excessive strain and thus are
unfavorable localized bonding schemes for the corresponding deltahedral
boranes. These strained Kekulé-type structures may be viewed as three-
dimensional analogues of some of the now-obsolete 19th century alterna-
tives to the Kekulé structures of benzene depicted in Fig. 2b. Strained
three-dimensional Kekulé-type structures may be identified in two general
ways: (i) the O’Neill–Wade restrictions, (ii) undesirable configurations of
the three localized 2c-2e B–B bonds. In a number of cases the Kekulé-type
structures of highest symmetry for a particular deltahedral borane have
undesirable features leading to excessive strain so that the most favor-
able Kekulé structures in terms of minimum strain exhibit relatively low
symmetry.

The O’Neill–Wade Restrictions

O’Neill and Wade28 have discussed localized bonding schemes for delta-
hedral boranes using 2c-2e B–B bonds and 3c-2e B–B–B bonds with the fol-
lowing basic assumptions:

1. Each skeletal boron or other atom is assumed to participate in three
skeletal bonds in addition to the external bond, typically to a hydrogen
atom in the boranes. This assumption is also implicit in the assumptions of
Lipscomb27,29 presented above.

2. Each edge of the skeletal Bn polyhedron must correspond to a 2c-2e
B–B bond or a 3c-2e B–B–B bond. Cross-polyhedral interactions, which are
significantly longer than the polyhedral edge interactions, are considered
to be non-bonding. The edge length(s) of the borane deltahedron thus may
be considered to correspond to boron–boron “bonding” distances either
through 2c-2e B–B or 3c-2e B–B–B bonds but not both.

3. A pair of boron atoms cannot be simultaneously bonded to each other
both by a 2c-2e B–B bond and one or two 3c-2e B–B–B bonds since these ar-
rangements would require too close an alignment of the atomic orbitals in-
volved. This assumption restricts severely the possible arrangements of
2c-2e B–B and 3c-2e B–B–B bonds that can be a valid Kekulé-type structure
for a given deltahedral borane.
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4. When individual bond networks do not match the symmetry of the
polyhedron in question, resonance between plausible canonical forms
needs to be invoked.

The important features of the O’Neill–Wade restrictions28 can be ex-
pressed in dual form as follows:

1. The participation of three orbitals per boron atom in the skeletal bond-
ing means in dual form that the sum of the numbers of bold dotted vertices
(i.e., the 3c-2e B–B–B bonds) and bold edges (i.e., the 2c-2e B–B bonds) must
be exactly three for every face.

2. The fact that a pair of boron atoms (i.e., an edge of the original delta-
hedron) cannot simultaneously be a part of a 2c-2e B–B bond and a 3c-2e
B–B–B bond means in dual form that no bold-dotted vertex can also be part
of a bold edge.

The Kekulé-type structures for B H6 6
2 − with the 3c-2e B–B–B bonds in alter-

nate faces of the octahedron (Fig. 3a) can be seen to violate the O’Neill–
Wade restrictions since the three pairs of boron atoms connected by a 2c-2e
B–B bond (the bold edges in Fig. 3a) are also connected by 3c-2e B–B–B
bonds (the shaded faces in Fig. 3a). This violation is also indicated by the
dual forms of these Kekulé-type structures (Fig. 3b) where the four bold dot-
ted vertices are also parts of bold edges. Thus the Kekulé-type structures for
B H6 6

2 − with the 3c-2e B–B–B bonds in alternate faces (Fig. 3a) can be as-
sumed to be Kekulé structures with high strain and thus very unfavorable.

Figure 4, besides showing duals for the borane deltahedra of interest
(Fig. 1), also depicts for each of the deltahedra a sample Kekulé-type struc-
ture in dualized form satisfying the O’Neill–Wade restrictions28. The sym-
metries of an individual Kekulé-type structure for each of the deltahedral
boranes of interest are listed in Table I so that Eq. (3) can be used to deter-
mine the corresponding numbers of equivalent Kekulé-type structures. The
Kekulé-type structure for octahedral B H6 6

2 − in Fig. 4, in contrast to the two
equivalent structures for B H6 6

2 − in Fig. 3a, is one of eight equivalent struc-
tures of C3v symmetry satisfying the O′Neill–Wade restrictions28.

Undesirable Configurations of the Three Two-Center Two-Electron
Boron–Boron Bonds

The Kekulé-type structures in dual form for the deltahedral boranes, such as
those depicted in Fig. 4, can be characterized by the following properties in
addition to their symmetry point groups:

1. The configurations of the three bold edges corresponding to the 2c-2e B–B
bonds. The five possible configurations, conveniently designated as ∆, Y, U,
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FIG. 5
The five possible configurations (∆, Y, U, VI, and III) for the three bold edges in the dual form
of the Kekulé-type structures representing the locations of the three 2c-2e B–B bonds in the
original deltahedron

Vertices covered
by bold edges Configurations

3

4

5

6

Triangle (∆)

Y-shaped (Y) Horseshoe (U)

“2+1” (VI)

Isolated (III)

TABLE I
The borane deltahedra, their duals, and their Kekulé-type structures

Deltahedron Dual

Numbers of vertices (v),
edges (e), and faces (f)

Symmetry
point groups

NK = |D|/|K|

v = f* e = e* f = v* D K

Octahedron Cube 6 12 8 Oh C3v 8 = 48/6

Pentagonal
bipyramid

Pentagonal prism 7 15 10 D5h Cs 10 = 20/2

Bisdisphenoid
Dual of the
bisdisphenoid

8 18 12 D2d C2v 2 = 8/4

4,4,4-Tricapped
trigonal prism

4,4,4-Tritruncated
trigonal bipyramid

9 21 14 D3h C3 4 = 12/3

4,4-Bicapped
tetragonal
antiprism

4,4-Bitruncated
tetragonal
trapezohedron

10 24 16 D4d Cs 8 = 16/2

Icosahedron Dodecahedron 12 30 20 Ih C3 40 = 120/3



VI, and III, can be characterized by the total number of vertices, b, covered
by the bold edges (3 ≤ b ≤ 6) and the configurations of the bold edges
(Fig. 5). The Kekulé-type structures for the deltahedral boranes discussed in
this paper are described by their symmetry point group designations fol-
lowed by ∆, Y, U, VI, or III in parentheses to describe the locations of their
2c-2e B–B bonds.

2. The number of vertices of the dual that are neither bold-dotted nor part of a
bold edge. Such vertices are conveniently designated as naked dual vertices
and the number of such vertices will be denoted by z. Naked dual vertices
correspond to faces of the original deltahedron that neither contain a 3c-2e
B–B–B bond nor have an edge that is a 2c-2e B–B bond.

Now consider Euler’s theorem in the following form

n – e + f = 2 (4)

in which n, e, and f are the numbers of vertices, edges, and faces, respec-
tively, of the original deltahedron. For a deltahedral borane with n boron
atoms, e = 3/2f and the numbers of 2c-2e B–B bonds (y) and 3c-2e B–B
bonds (t) are 3 and n – 2, respectively, so that

z = n – b – 2 (5)

using trivial algebra. For example, in the case of the C3(III) Kekulé-type
structure for tricapped trigonal prismatic B H9 9

2 − depicted on the dual
tritruncated trigonal bipyramid (Fig. 4), n = 9 and b = 6 for the III configura-
tion of the three 2c-2e B–B bonds so that z = 9 – 6 – 2 = 1. Note that b ≤ 6 so
that for any deltahedron for B Hn n

2 − , where n ≥ 9, there must be one or more
naked vertices in the dual corresponding to empty faces in the original
deltahedron.

Among the five possible configurations of the 2c-2e B–B bonds in the
deltahedral borane duals (Fig. 5), three of them can be considered undesir-
able for the following reasons:

1. The ∆ configuration requires a degree 3 vertex forming three 2c-2e B–B
bonds and thus cannot occur in the deltahedra in Fig. 1, which have only
degree 4 or higher vertices. The absence of degree 3 vertices appears to be a
requirement for stable deltahedral boranes B Hn n

2 − as suggested by the graph
theory derived approach to three-dimensional aromaticity30.

2. The U configuration corresponds to exactly three 2c-2e B–B bonds
from a vertex of degree 4 or higher. This violates the O’Neill–Wade restric-
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tion that either a 2c-2e B–B or 3c-2e B–B–B bond must connect every pair of
boron atoms connected by an edge in the underlying deltahedron.

3. The Y configuration corresponds to the three 2c-2e B–B bonds forming
the three edges of one of the triangles of a deltahedron similar to the three
2c-2e C-C bonds in cyclopropane. The Y configuration thus might be ex-
pected to exhibit some of the bond–angle strain of cyclopropane. However,
the eight equivalent Kekulé-type structures for octahedral B H6 6

2 − necessarily
have the Y configuration (Fig. 4). This suggests that B H6 6

2 − , although highly
symmetrical, has some bond–angle strain similar to that in cyclopropane
and thus might be expected to be more chemically reactive than some of
the higher deltahedral borane anions. This is in accord with experimental
observations31,32.

A feature common to these three undesirable configurations is that the
three 2c-2e B–B bonds occupy fewer than five vertices of the underlying
deltahedron. These undesirable configurations of the 2c-2e B–B bonds may
thus be regarded as excessively concentrated.

Some of the highest symmetry Kekulé-type structures for the deltahedral
boranes B Hn n

2 − (n ≥ 6) have these undesirable configurations of the 2c-2e
B–B bonds, notably the Cs(U) structures for B H7 7

2 − and the C3(Y) structures
for B H12 12

2 − (Fig. 4). However, all of the Kekulé-type structures found by
Lipscomb and coworkers33 from PRDDO calculations have the desirable VI
or III configurations of their 2c-2e B–B bonds except for B H6 6

2 − , where no
such Kekulé-type structures are possible. This computational work33 pro-
vides further evidence that the VI and III configurations of 2c-2e B–B bonds
in Kekulé-type structures for the deltahedral boranes are significantly more
favorable than the ∆, U, and Y configurations.

Figure 4 shows in dual form a representative of the highest symmetry
Kekulé-type structures that were found for the six borane deltahedra in
Fig. 3 and Figs 6 and 7 compare these structures with those found by
Lipscomb and coworkers33 from their PRDDO calculations. The following
observations can be made:

1. Octahedron. Eight equivalent C3v(Y) Kekulé-type structures are found.
Each of these structures has one face containing all three 2c-2e B–B bonds
corresponding to a vertex of the dual cube where all three bold edges meet
(Fig. 4). Lipscomb and coworkers33 find the same Kekulé-type structure for
B H6 6

2 − .
2. Pentagonal bipyramid. There are five enantiomeric pairs of equivalent

Cs(U) Kekulé-type structures with one naked vertex generated from an ini-
tial such structure by a C5 rotation (Fig. 4). Lipscomb and coworkers33 find
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for B H7 7
2 − a C1(VI) structure with no symmetry but also with no naked verti-

ces (Fig. 6). This structure with no symmetry avoids the topological forbid-
den U configuration of the three 2c-2e B–B bonds.

3. Bisdisphenoid. There are two equivalent C2v(III) Kekulé-type structures
without naked dual vertices (z = 0). These two equivalent Kekulé-type struc-
tures (Fig. 4) interchange the bold-dotted vertices and the bold-edged verti-
ces. These are the largest possible structures for a B Hn n

2 − deltahedral borane
without naked dual vertices corresponding to empty faces. Lipscomb and
coworkers33 find two different less symmetrical (Cs and C1) structures which
likewise have the III configuration without naked dual vertices (Fig. 6).
They describe their C1(III) structure as “topologically forbidden” since there
is neither a 2c-2e nor a 3c-2e bond between one of the pairs of adjacent
degree 5 boron vertices thereby violating one of the O’Neill–Wade restric-
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FIG. 6
Comparison of the maximum-symmetry Kekulé-type structures satisfying the O′Neill–Wade re-
strictions for B H7 7

2−, B H8 8
2−, and B H9 9

2− with the less symmetrical structures found by Lipscomb
and coworkers33 from PRDDO calculations
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tions28. This corresponds to neither a bold common edge nor a shared dot
between the “front” pentagon and the “bottom” pentagon in the dual
C1(III) depicted in Fig. 6.

4. 4,4,4-Tricapped trigonal prism. This deltahedron has a total of 14 (trian-
gular) faces, which are partitioned into two faces of one type and 12 faces
of a second type. The set of two equivalent faces corresponds to the two tri-
angular faces of the underlying trigonal prism whereas each of the remain-
ing 12 equivalent faces contains one of the three capping vertices, i.e., the
vertices of degree 4. The four equivalent C3(III) Kekulé-type structures
(Fig. 4) correspond to two enantiomeric pairs. In one enantiomeric pair one
of the triangular faces of the underlying trigonal prism contains a 3c-2e
B–B–B bond and the other such triangular face is an empty face correspond-
ing to the naked dual vertex. In the second such enantiomeric pair, the
roles of the triangular faces of the underlying trigonal prism are reversed.
Lipscomb and coworkers33 found a C1(VI) Kekulé-type structure with no
symmetry (Fig. 6).

5. 4,4-Bicapped square antiprism. There are eight equivalent Cs(VI) Kekulé-
type structures of B H10 10

2 − generated from an initial such Kekulé-type struc-
ture by the operations of the D4 point group (Fig. 4). Lipscomb and cowork-
ers33 described a similar C1(VI) structure but with no symmetry (their
“4,4,3" structure) as well as a second C1(III) structure with a different con-
figuration of the three 2c-2e B–B bonds (their ”3,5,3" structure). Both of
their structures (Fig. 7) appear to be local minima on their calculated en-
ergy hypersurface.

6. Icosahedron. Twenty equivalent enantiomeric pairs of C3(Y) Kekulé-type
structures are found (Fig. 4). Each of these structures has one face contain-
ing all three 2c-2e B–B bonds corresponding to a vertex of the dual
dodecahedron where all three bold edges meet. Thus the C3(Y) Kekulé-type
structures for the regular octahedron and the regular icosahedron are analo-
gous. The six naked dual vertices of the C3(Y) Kekulé-type structure for the
icosahedron have a C3 trigonal prismatic orientation, which is distorted
from an ideal D3h trigonal prism to only C3 symmetry in accord with the
underlying symmetry of the Kekulé-type structure. Lipscomb and cowork-
ers33 found a lower symmetry Cs(III) structure (Fig. 7) having the minimum
number of naked dual vertices (z = 12 – 6 – 2 = 4). The structure found by
Lipscomb and coworkers33 thus avoids the undesirable Y configuration of
the three 2c-2e B–B bonds at the expense of losing the three-fold symmetry.

Gielen34 has found 5 430 Kekulé-type structures for B H12 12
2 − which can be

classified into 113 general types called “canonical forms” with symmetries
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C1 (77 canonical forms), C2 (19 canonical forms), C3 (7 canonical forms),
and D3 (10 canonical forms). However, some of Gielen’s Kekulé-type struc-
tures for B H12 12

2 − violate the O’Neill–Wade restrictions28. For example, all of
the Kekulé-type structures for B H12 12

2 − with D3 symmetry necessarily have
the Y configuration (Fig. 5) and the forbidden property of a pair of boron
atoms connected both by a 2c-2e B–B bond and a 3c-2e B–B–B bond corre-
sponding in dual form to a bold dotted vertex also being part of a bold
edge.

Conclusion

Localized structures analogous to the Kekulé structures for benzenoid hy-
drocarbons can be constructed for the deltahedral boranes B Hn n

2 − . These lo-
calized structures contain exactly three 2c-2e B–B bonds and (n – 2) 3c-2e
B–B–B bonds. The number of equivalent such Kekulé-type structures corre-
sponds to the index of the symmetry group of the Kekulé structure, K, in
the symmetry group, D, of the deltahedron. The Kekulé-type structures for
the deltahedral boranes are more readily visualized in the dual polyhedra
where the 3c-2e B–B–B bonds become special vertices and the 2c-2e B–B
bonds become special edges.
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FIG. 7
Comparison of the maximum-symmetry Kekulé-type structures satisfying the O’Neill–Wade re-
strictions for B H10 12

2− and B H12 12
2− with the less symmetrical structures found by Lipscomb and

coworkers33 from PRDDO calculations
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Some three-dimensional Kekulé-type structures are found to have exces-
sive strain and thus describe unfavorable localized bonding schemes for the
corresponding deltahedral boranes. Strained three-dimensional Kekulé-type
structures exhibit the following features: (i) pairs of boron atoms connected
simultaneously by a 2c-2e B–B bond and a 3c-2e B–B–B bond (violation of
the O’Neill–Wade restrictions); (ii) the three 2c-2e B–B bonds are exces-
sively concentrated occupying only three or four vertices (the undesirable
∆, U, and Y configurations). PRDDO computations by Lipscomb and co-
workers suggest that wide distribution of the three 2c-2e B–B bonds
throughout the deltahedron and a minimum number of empty faces are
more important than maximum symmetry in leading to the most favorable
Kekulé-type structure.
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